Benha University
Faculty of Engineering Shoubra

Electrical Circuits (2)

Electrical Eng. Dept.
$1^{\text {st }}$ year communication 10-12 May 2015

Sheet (10) ... Three Phase Systems

1. A three-phase, three-wire 100 volt, $A B C$ system supplies a balanced delta-connected load with impedances of $20 \angle 45^{\circ}$ ohms. Determine the line currents and draw the phasor diagram.

To obtain the line currents as shown in the circuit diagram, we apply Kirchhoff's current law at each junction of the load. Thus

$$
\begin{aligned}
& \mathbf{I}_{A}=\mathbf{I}_{A B}+\mathbf{I}_{A C}=5.0 / 75^{\circ}-5.0 / 195^{\circ}=8.66 / 45^{\circ} \\
& \mathbf{I}_{B}=\mathbf{I}_{B A}+\mathbf{I}_{B C}=-5.0 / 75^{\circ}+5.0 /-45^{\circ}=8.66 /-75^{\circ} \\
& \mathbf{I}_{C}=\mathbf{I}_{C A}+\mathbf{I}_{C B}=5.0 \angle 195^{\circ}-5.0 /-45^{\circ}=8.66 / 165^{\circ}
\end{aligned}
$$

The phasor diagram of phase and line currents is shown in Fig. 14-29 above.
2. Three identical impedances of $5 \angle 30^{\circ}$ ohms are connected in wye to a three-phase, three-wire, 150 volt, CBA system. Find the line currents and draw the phasor diagram.

Best Wishes;

Benha University
Faculty of Engineering Shoubra

Electrical Circuits (2)

Electrical Eng. Dept.
$1^{\text {st }}$ year communication 10-12 May 2015

With balanced, throe-wiro, wye-connected systems we may add the neutral conduetor as shown in Fig. 14-30. Then the line to neutral roltages, with mngnitudes

$$
V_{E S}=V_{L} / \sqrt{3}=150 / \sqrt{3}=86.6
$$

are applied with the phase angles of the CBA sequence. The line currents are

$$
\mathbf{I}_{A}=\frac{Y_{A N}}{Z}=\frac{86.6 /-90^{\circ}}{5 /-30^{\circ}}=17.32 /-60^{\circ} \quad \mathbf{I}_{B}=\frac{\mathbf{V}_{B N}}{Z}=17.32 / 60^{\circ} \quad, \quad \mathbf{I}_{c}=\frac{V_{c N}}{Z}=17.32 / 180^{\circ}
$$

The phonor diagram in Fig. 14-31 shows the balanced set of line eurrents leading the line to neutral voltages by 30°, the angle on the load impedance.
3. Three identical impedances of $10 \angle 30^{\circ}$ ohms in a wye connection and three identical impedances of $15 \angle 0^{\circ}$ ohms also in a wye connection are both on the same three-phase, three-wire 250 volt system. Find the total power.

$$
\begin{aligned}
& \text { Since both loads are wye-connected, their phase } \\
& \text { impedances can be put directly on the one-line } \\
& \text { equivalent circuit ns shown in Fig. 14-38. The } \\
& \text { voltage required in the one-line equivalent circuit is } \\
& V_{L N}=V_{L} / \sqrt{3}=250 / \sqrt{3}=144.5 \\
& \text { Then the current is } \\
& \mathbf{I}_{\mathrm{L}}=\frac{144.5 / 0^{\circ}}{10 / 30^{\circ}}+\frac{144.5 / 0^{\circ}}{15 / 0^{\circ}} \\
& =14.45 /-80^{\circ}+9.42 / 0^{\circ}=28.2 /-18.1^{\circ}
\end{aligned}
$$

Fig. 14-3s

In the power formula $P=\sqrt{3} V_{L} I_{L} \cos \theta, \theta$ is the angle of the load impedance when there is a single load. With several loads on the same system, θ is the angle of the equivalent load impedance. In computing the current \mathbf{I}_{L}, both loads were considered and the current was found to lag the voltage by 18.1°. Therefore we know that the equivalent impedance is inductive and has an angle of 18.1°. Then

$$
P=\sqrt{3} V_{L} I_{L} \cos \theta=\sqrt{3} 250(23.2) \cos 18.1^{\circ}=9530 \mathrm{w}
$$

4. Three identical impedances of $12 \angle 30^{\circ}$ ohms in a delta connection and three identical impedances of $5 \angle 45^{\circ}$ ohms in a wye connection are on the same three-phase, three wire, 208 volt, $A B C$ system. Find the line currents and the total power.

Best Wishes;

Benha University
 Faculty of Engineering Shoubra

Electrical Eng. Dept.
$1^{\text {st }}$ year communication 10-12 May 2015

Since the first of the loads is delta connected we obtain the wre-epnmeted equivalent,

$$
Z_{Y}=Z_{\Delta} / 0=12 / 90^{\circ} / 3=4 / 30^{\circ}
$$

With a line voltage of 208 , the line to neutral volt age is $808 \sqrt{3}$ or 120 yolts

The one-line equivalent eircuit is shown in Fig. 14-34 with the two load impedances $4 / 30^{\circ}$ and 545° ohms. Theae impedances can be replaced with an equivalent where

$$
Z_{\mathrm{tq}}=\frac{4 / 80^{\circ}\left(5 / 45^{\circ}\right)}{4 / 80^{\circ}+5 / 45^{\circ}}=224 / 84.6^{\circ}
$$

Then the current is

Fig. 14-34

$$
I_{L}=\frac{V_{L N}}{Z_{* 4}}=\frac{120 / 00^{\circ}}{2.24 / 36.6^{\circ}}=53.64-36.6^{\circ}
$$

The voltage $\mathrm{F}_{\text {AN }}$ in the $A B G$ gequence has a phase angle of 90° and thus $\left.\mathbf{I}_{A}=53.6 / 90^{\circ}-30.6^{\circ}\right)=$ $58.6 / 63.4^{\circ}$. Similarly we find that $\mathbf{I}_{E}=58.6 /-66.6^{\circ}$ and $\mathbf{I}_{C}=58.6 /=186.6^{\circ}$.

The total power
5. A three-phase, three-wire, 240 volt, CBA system supplies a delta-connected load in which $\mathrm{Zab}=25 \angle 90^{\circ}, \mathrm{ZBc}=15 \angle 30^{\circ}$ and ZCA $=20 \angle 0^{\circ}$ ohms. Find the line currents and the total power.

> Apply the line voltages of the CBA sequence to the delta-connected load in Fig. 14-35, and select the phase currents as shown on the diagram. Then

$$
\begin{aligned}
& \mathbf{I}_{A B}=\frac{\mathbf{V}_{A B}}{Z_{A B}}=\frac{240 / 240^{\circ}}{25 / 90^{\circ}}=9.6 / 150^{\circ} \\
& \mathbf{I}_{B C}=\frac{\mathrm{V}_{B C}}{Z_{B C}}=\frac{240 / 0^{\circ}}{15 / 30^{\circ}}=16.0 /-30^{\circ} \\
& \mathrm{I}_{C A}=\frac{\mathrm{V}_{C A}}{Z_{C A}}=\frac{240 / 120^{\circ}}{20 / 0^{\circ}}=12.0 / 120^{\circ}
\end{aligned}
$$

Fig. 14-35

Now the line eurrents are computed in terms of the phase currents.

$$
\begin{aligned}
& \mathbf{I}_{A}=\mathbf{I}_{A B}+\mathbf{I}_{A C}=9.6 / 150^{\circ}-12 / 120^{\circ}=6.06 / 247.7^{\circ} \\
& \mathbf{I}_{B}=\mathbf{I}_{B A}+\mathbf{I}_{B C}=-9.6 / 150^{\circ}+16 /-30^{\circ}=25.6 /-30^{\circ} \\
& \mathbf{I}_{C}=\mathbf{I}_{C A}+\mathbf{I}_{C A}=12 / 120^{\circ}-16 /-80^{\circ}=27.1 / 137.2^{\circ}
\end{aligned}
$$

Aa expected with an unhalnned load, the line currenta are not equal,

The power in each phase is calculated as follows.
Impedance $\mathbf{Z}_{A B}=25 / 90^{\circ}=0+j 25 \mathrm{ohms}, \quad R_{A B}=0$ and $I_{A B}=9.6 \mathrm{amp}$. Then

$$
P_{A B}=I_{A B}^{2} R_{A B}=(9.6)^{2}(0)=0
$$

$$
\text { Impedance } \mathbf{Z}_{B C}=15 / 30^{\circ}=13+j 7.5 \text { ohms, } \quad R_{B C}=13 \text { ohms and } I_{B C}=16 \mathrm{amp} . \quad \text { Then }
$$

$$
P_{B C}=I_{B C}^{2} R_{B C}=(16)^{2}(13)=3330 \mathrm{w}
$$

$$
\text { Impedance } \mathbf{Z}_{C A}=20 / 0^{\circ}=20+j 0 \text { ohms, } \quad R_{C A}=20 \text { ohms and } I_{C A}=12 \text { amp. Then }
$$

$$
P_{C A}=I_{C A}^{2} R_{C A}=(12)^{2}(20)=2880 \mathrm{w}
$$

The total power is the sum of the power in the phases,

$$
P_{T}=P_{A B}+P_{B C}+P_{C A}=0+3330+2880=6210 \mathrm{w}
$$

Best Wishes;

Benha University
Faculty of Engineering Shoubra

Electrical Circuits (2)

Electrical Eng. Dept.
$1^{\text {st }}$ year communication 10-12 May 2015
6. A three-phase, four-wire, 208 volt, $A B C$ system supplies a wyeconnected load in which $Z A=10 \angle 0^{\circ}$, $Z B=15 \angle 30^{\circ}$ and $\mathrm{Zc}=10 \angle-30^{\circ}$ ohms. Find the line currents, the neutral current and the total power.

Apply the line to neutral voltages of the $A B C$ sequence to the circuit as shown in Fig. 14-36 and compute the line currents assuming the positive direction toward the load.
$\mathbf{I}_{A}=\mathbf{V}_{A N} / \mathbf{Z}_{A}=\left(120 / 90^{\circ}\right) /\left(10 / 0^{\circ}\right)=12 / 90^{\circ}$
$\mathrm{I}_{\mathrm{B}}=\mathrm{V}_{\mathrm{BN}} / \mathrm{Z}_{\mathrm{B}}=\left(120 /-30^{\circ}\right) /\left(15 / 30^{\circ}\right)$

$$
=8 /-60^{\circ}
$$

$$
\mathbf{I}_{C}=\mathbf{V}_{C N} / \mathbf{Z}_{C}=\left(120 /-150^{\circ}\right) /\left(10 /-30^{\circ}\right)
$$

$$
=12 /-120^{\circ}
$$

The neutral conductor contains the phasor sum of the line currents and if the positive direction is toward the load,

$$
\mathbf{I}_{N}=-\left(\mathbf{I}_{A}+\mathbf{I}_{B}+\mathbf{I}_{C}\right)=-\left(12 / 90^{\circ}+8 /-60^{\circ}+12 /-120^{\circ}\right)=5.69 / 69.4^{\circ}
$$

[^0]7. The load impedances of Problem 6 are connected to a threephase, three-wire, 208 volt, $A B C$ system. Find the line currents and the voltages across the load impedances.

Best Wishes;

Benha University
 Faculty of Engineering Shoubra

Electrical Circuits (2)

Electrical Eng. Dept.
$1^{\text {st }}$ year communication 10-12 May 2015

Fig. 14-37

Fig. 14-38

The circuit of Fig. 14-37 shows the two line voltages $\mathbf{V}_{A B}$ and $\mathbf{V}_{B C}$. With the mesh currents \mathbf{I}_{1} and \mathbf{I}_{2} selected as shown, the matrix form of the mesh current equations is

$$
\left[\begin{array}{cc}
10 / 0^{\circ}+15 / 30^{\circ} & -15 / 30^{\circ} \\
-15 / 30^{\circ} & 15 / 30^{\circ}+10 /-30^{\circ}
\end{array}\right]\left[\begin{array}{l}
\mathbf{I}_{1} \\
\mathbf{I}_{2}
\end{array}\right]=\left[\begin{array}{c}
208 / 120^{\circ} \\
208 / 0^{\circ}
\end{array}\right]
$$

from which

$$
\begin{aligned}
& \mathbf{I}_{1}=\frac{5210 / 90^{\circ}}{367.5 / 3.9^{\circ}}=14.15 / 86.1^{\circ} \\
& \mathbf{I}_{2}=\frac{3730 / 56.6^{\circ}}{367.5 / 3.9^{\circ}}=10.15 / 52.7^{\circ}
\end{aligned}
$$

The line currents with positive directions toward the load are given in terms of \mathbf{I}_{1} and I_{2} as

$$
\begin{aligned}
& \mathbf{I}_{A}=\mathbf{I}_{1}=14.15 / 86.1^{\circ} \\
& \mathbf{I}_{z}=\mathbf{I}_{2}-\mathbf{I}_{1}=10.15 / 52.7^{\circ}-14.15 / 86.1^{\circ}=8.0 /-49.5^{\circ} \\
& \mathbf{I}_{C}=-\mathbf{I}_{2}=10.15 /\left(52.7^{\circ}-180^{\circ}\right)=10.15 /-127.3^{\circ}
\end{aligned}
$$

Now the voltages across the load impedances are

$$
\begin{array}{lll}
\mathbf{V}_{A O}=\mathbf{I}_{A} \mathbf{Z}_{A}=14.15 / 86.1^{\circ}\left(10 / 0^{\circ}\right) & =141.5 / 86.1^{\circ} \\
\mathbf{V}_{B O}=\mathbf{I}_{B} \mathbf{Z}_{B}=8.0 /-49.5^{\circ}\left(15 / 30^{\circ}\right) & =120 /-19.5^{\circ} \\
\mathbf{v}_{C O}=\mathbf{I}_{C} \mathbf{Z}_{C}=10.15 /-127.3^{\circ}\left(10 /-30^{\circ}\right) & =101.5 /-157.3^{\circ}
\end{array}
$$

A plot of the three voltages $\mathbf{V}_{A O}, \mathbf{V}_{B O}$ and $\mathbf{V}_{C O}$ shows the triangle of the $A B C$ sequence when the ends of the phasors are joined by straight lines. Then point N can be added as shown in Fig. 14-38 above.

Best Wishes;

[^0]: The impedance $\mathbf{Z}_{A}=10+j 0$ ohms passes current $\mathbf{I}_{A}=12 / 90^{\circ} \mathrm{amp}$, and the power in this phase of the load is $P_{A}=(12)^{2} 10=1440 \mathrm{w}$. Impedance $\mathrm{Z}_{B}=15 / 30^{\circ}=13+j 7.5$ contains the current $I_{B}=8 /-60^{\circ} \mathrm{amp}$, and the phase power is $P_{B}=(8)^{2} 13=832 \mathrm{w}$. Similarly $\mathrm{Z}_{C}=10 /-30^{\circ}=8.66-j \overline{\mathrm{~L}} \mathrm{hms}$ contains $\mathrm{I}_{C}=12 /-120^{\circ}$ amp and $P_{C}=(12)^{28} .66=1247 \mathrm{w}$.

 The total power is $P_{T}=P_{A}+P_{B}+P_{C}=1440+832+1247=3519 \mathrm{w}$.

