

Benha University Faculty of Engineering Shoubra 2) Electrical Eng. Dept. 1st year communication 10-12 May 2015

Sheet (10) ... Three Phase Systems

1. A three-phase, three-wire 100 volt, ABC system supplies a balanced delta-connected load with impedances of $20 \angle 45^{\circ}$ ohms. Determine the line currents and draw the phasor diagram.

2. Three identical impedances of $5 \angle 30^{\circ}$ ohms are connected in wye to a three-phase, three-wire, 150 volt, CBA system. Find the line currents and draw the phasor diagram.

Electrical Circuits (2)

Benha University Faculty of Engineering Shoubra Electrical Eng. Dept. 1st year communication 10-12 May 2015

With balanced, three-wire, wye-connected systems we may add the neutral conductor as shown in Fig. 14-30. Then the line to neutral voltages, with magnitudes $V_{LN} = V_L/\sqrt{3} = 150/\sqrt{3} = 86.6$ are applied with the phase angles of the *CBA* sequence. The line currents are $I_A = \frac{V_{AN}}{Z} = \frac{86.6/-90^\circ}{5/-30^\circ} = 17.32/-60^\circ$, $I_B = \frac{V_{BN}}{Z} = 17.32/60^\circ$, $I_C = \frac{V_{CN}}{Z} = 17.32/180^\circ$ The phasor diagram in Fig. 14-31 shows the balanced set of line currents leading the line to neutral voltages by 30°, the angle on the load impedance.

3. Three identical impedances of 10∠30° ohms in a wye connection and three identical impedances of 15∠0° ohms also in a wye connection are both on the same three-phase, three-wire 250 volt system. Find the total power.

4. Three identical impedances of 12∠30° ohms in a delta connection and three identical impedances of 5∠45° ohms in a wye connection are on the same three-phase, three wire, 208 volt, ABC system. Find the line currents and the total power.

Electrical Circuits (2)

Benha University Faculty of Engineering Shoubra Electrical Eng. Dept. 1st year communication 10-12 May 2015

5. A three-phase, three-wire, 240 volt, CBA system supplies a delta-connected load in which Zab = $25\angle 90^\circ$, ZBc = $15\angle 30^\circ$ and

ZCA = $20 \angle 0^{\circ}$ ohms. Find the line currents and the total power.

Apply the line voltages of the CBA sequence to the delta-connected load in Fig. 14-35, and select the phase currents as shown on the diagram. Then 240/240* $I_{AB} = \frac{V_{AB}}{Z_{AB}} = \frac{240/240^{\circ}}{25/90^{\circ}} = -9.6/150^{\circ}$ B $I_{BC} = \frac{V_{BC}}{Z_{BC}} = \frac{240/0^{\circ}}{15/30^{\circ}} = 16.0/-30^{\circ}$ 240<u>/0*</u> 240/1201 c $I_{CA} = \frac{V_{CA}}{Z_{CA}} = \frac{240/120^{\circ}}{20/0^{\circ}} = 12.0/120^{\circ}$ Fig. 14-35 Now the line currents are computed in terms of the phase currents. $I_A = I_{AB} + I_{AC} = 9.6/150^\circ - 12/120^\circ = 6.06/247.7^\circ$ $I_B = I_{BA} + I_{BC} = -9.6/(150^\circ) + 16/(-30^\circ) = 25.6/(-30^\circ)$ $I_C = I_{CA} + I_{CB} = 12/120^\circ - 16/-30^\circ = 27.1/137.2^\circ$ As expected with an unbalanced load, the line currents are not equal. The power in each phase is calculated as follows. Impedance $Z_{AB} = 25/90^{\circ} = 0 + j25$ ohms, $R_{AB} = 0$ and $I_{AB} = 9.6$ amp. Then $P_{AB} = I^2_{AB} R_{AB} = (9.6)^2(0) = 0$ Impedance $Z_{BC} = 15/30^{\circ} = 13 + j7.5$ ohms, $R_{BC} = 13$ ohms and $I_{BC} = 16$ amp. Then $P_{BC} = I_{BC}^2 R_{BC} = (16)^2 (13) = 3330 \text{ w}$ Impedance $Z_{CA} = 20/0^{\circ} = 20 + j0$ ohms, $R_{CA} = 20$ ohms and $I_{CA} = 12$ amp. Then $P_{CA} = I_{CA}^2 R_{CA} = (12)^2 (20) = 2880 \text{ w}$ The total power is the sum of the power in the phases, $P_T = P_{AB} + P_{BC} + P_{CA} = 0 + 3330 + 2880 = 6210 \text{ w}$

Benha University Faculty of Engineering Shoubra Electrical Eng. Dept. 1st year communication 10-12 May 2015

6. A three-phase, four-wire, 208 volt, ABC system supplies a wyeconnected load in which ZA=10∠0°, ZB= 15∠30° and Zc=10∠-30° ohms. Find the line currents, the neutral current and the total power.

7. The load impedances of Problem 6 are connected to a threephase, three-wire, 208 volt, ABC system. Find the line currents and the voltages across the load impedances.

Electrical Circuits (2)

Benha University Faculty of Engineering Shoubra Electrical Eng. Dept. 1st year communication 10-12 May 2015

Fig. 14-38 above.